

Induction of the C/EBP β Gene by Dexamethasone and Glucagon in Primary-Cultured Rat Hepatocytes¹

Fumihiko Matsuno,^{*,†} Shoaib Chowdhury,^{*} Tomomi Gotoh,^{*} Katsuro Iwase,^{*} Hiromitsu Matsuzaki,[†] Kiyoshi Takatsuki,[†] Masataka Mori,^{*} and Masaki Takiguchi^{*‡}

Departments of ^{*}Molecular Genetics and [†]Internal Medicine, Kumamoto University School of Medicine, Kumamoto 862

Received for publication, October 16, 1995

The synthetic glucocorticoid, dexamethasone, and glucagon cooperatively elevated the level of mRNA for the transcription factor CCAAT/enhancer binding protein β (C/EBP β) in primary-cultured rat hepatocytes. In response to dexamethasone and/or glucagon, C/EBP β mRNA started to increase as early as at 30 min, reached a maximum within 2 h, and then gradually decreased. The administration of cycloheximide, a protein synthesis inhibitor, led rather to an increase in C/EBP β mRNA, which suggested that a labile negative protein factor(s) is involved in regulation of the C/EBP β mRNA level. Cycloheximide further augmented the increases in C/EBP β mRNA by dexamethasone and/or glucagon. Therefore, C/EBP β mRNA accumulation in response to these hormones is apparently independent of ongoing protein synthesis. The elevation of the C/EBP β mRNA level by these hormones was accounted for by increases in the rate of transcription of the C/EBP β gene, as deduced on nuclear run-on analysis. Gel mobility shift analysis revealed that the DNA-binding activity of C/EBP β was increased cooperatively by dexamethasone and glucagon. These results suggest that the C/EBP β gene is primarily induced by glucocorticoids and/or glucagon and that the accumulated C/EBP β protein is then involved in secondary activation of target genes in response to these hormones in the liver.

Key words: C/EBP β , dexamethasone, glucagon, liver, primary hepatocytes.

A number of genes involved in the exhibition of liver-specific traits such as gluconeogenesis and urea biosynthesis are regulated hormonally (for recent reviews, see Refs. 1-4). In the course of the development of mammals from the late fetal to neonatal period, a set of liver-selective genes is induced. This induction can be triggered by glucocorticoids and/or glucagon (or analogs of cAMP, a second messenger of glucagon). After birth, these genes are also under the positive control of glucocorticoids and/or glucagon, which seem to mediate the effects of environmental fluctuations such as dietary changes (1-4). The responses of gene transcription to hormones can be categorized into two classes: primary and secondary. The primary responses occur rapidly without the requirement of new protein synthesis, and result from modification of preexisting transcriptional regulators. The secondary responses are delayed in the timing of onset and are sensitive to protein synthesis inhibitors, suggesting the involvement of a transcriptional regulator(s) newly synthesized through an earlier response. A typical model of primary and secondary

responses is provided by an insect steroid hormone, ecdysone, in *Drosophila*. On the onset of metamorphosis from the larval to adult stage, ecdysone triggers a cascade of gene activations, some of which can be monitored in the salivary gland as polytene chromosome puffs (reviewed in Refs. 5 and 6). Less than ten puffs appear rapidly in response to ecdysone, whereas more than 100 late puffs are induced by gene products of earlier processes. A secondary response that has also been noted is the action of glucocorticoids in mammalian tissues including the liver. For example, the genes for hepatic α_{2u} -globulin (7) and its isoform (8, 9), and ornithine cycle enzymes such as carbamylphosphate synthetase, argininosuccinate lyase and arginase (10) are induced by glucocorticoids with delayed onset depending on *de novo* protein synthesis. As for glucagon, while it induces a number of genes rapidly, repression of the induction by protein synthesis inhibitors has been noted for several genes such as the serine aminotransferase gene (11) and ornithine cycle enzyme genes (10). This suggests the possibility that the induction of these genes by glucagon is triggered in a primary manner and is sustained in a secondary manner. The transcriptional regulator(s) that is induced primarily by glucocorticoids or glucagon and then activates the target genes has remained to be identified.

CCAAT/enhancer binding protein (C/EBP) β (12), also known as NF-IL6 (13), IL6-DBP (14), LAP (15), AGP/EBP (16), and CRP2 (17), is a transcription factor of the basic region/leucine zipper type and is a member of the C/EBP family, the prototype of which is a liver-selective

¹This work was supported in part by Grants-in-Aid from the Ministry of Education, Science and Culture of Japan (to H.M., K.T., M.M., and M.T.), and grants from the Ministry of Health and Welfare of Japan (to H.M., K.T., and M.M.).

²To whom correspondence should be addressed. E-mail: takiguchi@gpo.kumamoto-u.ac.jp

Abbreviations: C/EBP, CCAAT/enhancer binding protein; HNF-3 β , hepatocyte nuclear factor-3 β ; GR, glucocorticoid receptor; CREB, cAMP-responsive element-binding protein; bp, base pair(s).

transcription factor, C/EBP α (12, 18). While C/EBP β is also abundant in the liver and plays a role in the liver-selective transcription of target genes (15, 19, 20), it seems to be involved in various cellular processes in a variety of tissues, including differentiation and activation of myelomonocytic cells (for a review, see introduction of Ref. 21), adipocyte differentiation (12, 22), and the acute-phase response in the liver (13, 14, 16). We here investigated the possibility that this factor mediates the secondary response to glucocorticoids and/or glucagon, themselves having been induced primarily. We found that the C/EBP β gene is induced cooperatively by dexamethasone and glucagon in primary-cultured rat hepatocytes. During the course of this study, elevation of the C/EBP β mRNA level by dexamethasone in a hepatoma cell line (23, 24) and by a cAMP analog in the liver of a whole rat (25) was briefly reported. The present study demonstrates that dexamethasone and glucagon, and their combination cooperatively induce the C/EBP β gene in a primary manner, and suggests that C/EBP β is involved in secondary induction of target genes in response to these hormones.

EXPERIMENTAL PROCEDURES

Isolation and Culture of Hepatocytes—Parenchymal hepatocytes from male Wistar rats (6–9 weeks) were isolated by *in situ* perfusion of their livers with collagenase as described (26, 27). 3×10^6 cells were seeded into collagen-coated plastic dishes (Corning, 100 ϕ) with 10 ml of Dulbecco's modified Eagle's medium containing 5% fetal bovine serum and 100 μ g/ml streptomycin. The medium was changed 24 h after plating.

Isolation and Blot Analysis of RNA—Total RNA was isolated by the acid guanidinium thiocyanate-phenol-chloroform extraction procedure (28). The RNA (5 μ g per lane) was electrophoresed in denaturing formaldehyde-agarose (1%) gels. After visualizing 28S and 18S rRNAs by ethidium bromide staining to check the integrity of RNA samples and equal loading, the RNA was transferred onto nylon membranes. Hybridization was performed using DNA probes 32 P-labeled by the random priming method. Radioactive bands were visualized by autoradiography on X-ray films and the radioactivity was measured with a Bio-Image Analyzer BAS2000 (Fuji Photo Film, Tokyo). RNA was usually prepared from three or more independent cultures. Relative mRNA levels are shown as mean values with standard errors. The following DNA probes were used: mouse C/EBP α , the 415-bp *Sma*I fragment of the mouse gene (20, 29); mouse C/EBP β , the 390-bp *Nco*I fragment of the mouse gene (12, 16, 20); rat arginase, the ~850-bp *Eco*RI-*Eco*RV cDNA fragment of pARGr-2 (30).

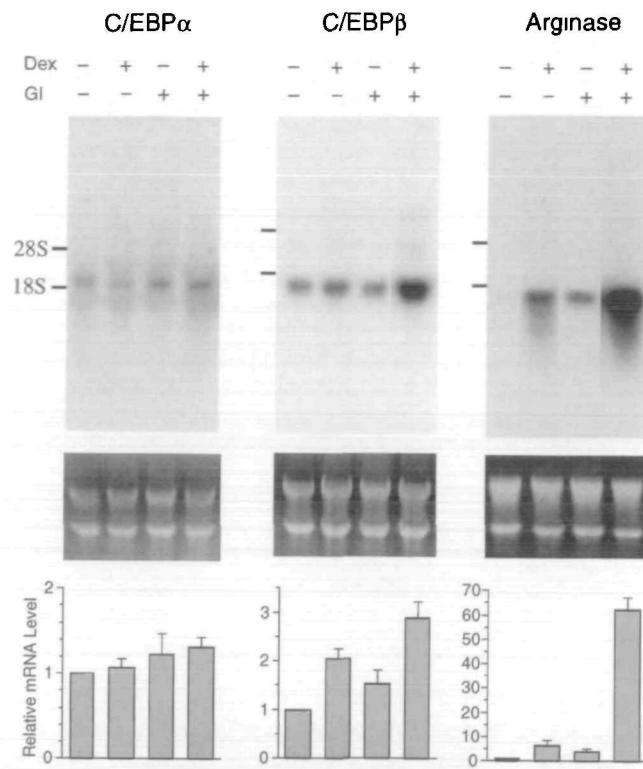
Nuclear Run-On Analysis—Nuclei from primary-cultured hepatocytes were isolated by the detergent treatment procedure described (31). Nuclei derived from 1.0–1.5 \times 10 7 cells were suspended in 100 μ l of a buffer containing 50 mM Tris-HCl (pH 8.3), 40% glycerol, 5 mM MgCl₂, and 0.1 mM EDTA, and stored at –80°C. Run-on transcription was started by mixing the thawed nuclear suspension with 150 μ l of a solution containing 10 mM Tris-HCl (pH 8.0), 300 mM KCl, 5 mM MgCl₂, 5 mM DTT, 1 mM ATP, 1 mM CTP, 1 mM GTP, and 60 μ Ci [α - 32 P]UTP (3,000 Ci/mmol), and allowed to proceed for 30 min with shaking at 30°C. Labeled RNA was isolated by the acid guanidinium

thiocyanate-phenol-chloroform extraction procedure (28) as follows. The reaction was stopped by adding 300 μ l of a solution containing 5.3 M guanidinium thiocyanate, 33 mM sodium citrate, 0.67% sarcosyl, and 0.1 M β -mercaptoethanol, followed by mixing with 50 μ l of 2 M sodium acetate (pH 4.0). After extraction with 500 μ l of water-saturated phenol and 200 μ l of chloroform, RNA in the resultant aqueous phase was precipitated with 600 μ l of isopropanol at room temperature for 10 min. The precipitate was collected by centrifugation, washed with 75% ethanol, and suspended in 100 μ l of water.

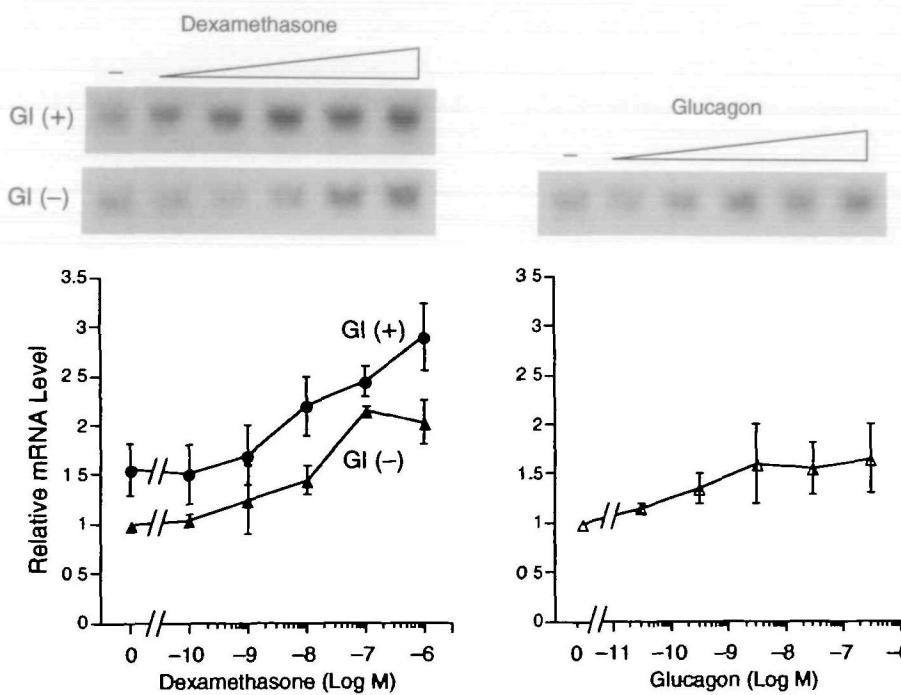
To increase the hybridization specificity and efficiency, antisense strand RNAs synthesized *in vitro* with SP6 RNA polymerase were used as probes. The template DNA for the C/EBP β probe corresponds to the ~850-bp *Pst*I-*Eco*RI segment of the mouse C/EBP β gene (20). This segment covers the region encoding the C-terminal 31 amino acid residues and the 3' noncoding region, in which the nucleotide sequences of the mouse (12, 16) and rat (15) C/EBP β genes are well conserved. The ~850-bp segment was inserted into the *Xba*I and *Bam*HI sites of the plasmid pcDNAII (Invitrogen, Netherlands) after manipulating both ends. The resultant plasmid, named pcDNAII-C/EBP β -2, was linearized by *Xba*I digestion and then subjected to *in vitro* transcription with SP6 RNA polymerase. As a control, the antisense strand RNA of rat hepatocyte nuclear factor-3 β (HNF-3 β) was used; the reverse transcription/polymerase chain reaction product that was derived from rat liver RNA and that corresponds to nucleotide positions 182 to 1576 of the published HNF-3 β cDNA sequence (32) was subcloned into the *Eco*RV site of pcDNAII, and the resultant plasmid, named pcDNAII-HNF-3 β , was cut with *Xba*I and processed for transcription. Antisense strand RNAs (2 μ g) were separated by electrophoresis in denaturing formaldehyde-agarose gels and blotted onto nylon membranes.

Membrane strips harboring blotted RNAs were subjected to hybridization at 68°C for 16 h in 2 ml of a buffer containing 50% formamide, 5 \times Denhardt's solution, 0.75 M NaCl, 50 mM NaH₂PO₄ (pH 7.4), 5 mM EDTA, 0.1% SDS, 0.1 mg/ml denatured salmon testis DNA, and 3.5 \times 10 6 dpm of 32 P-labeled RNA. After washing at 68°C in a solution containing 15 mM NaCl, 1.5 mM sodium citrate, and 0.1% SDS, the hybridized bands were visualized and the radioactivity was measured with a Bio-Image Analyzer.

Gel Mobility-Shift Assay—Nuclear extracts of hepatocytes were prepared by the mini-scale detergent treatment procedure described (33). Double-stranded synthetic oligonucleotides were 5' end-labeled with [γ - 32 P]ATP and T4 polynucleotide kinase, and used as probes. The binding reaction was carried out on ice for 30 min in 10 μ l of a mixture containing 25 mM Hepes-KOH (pH 7.6), 50 mM KCl, 1 mM EDTA, 0.5 mM spermidine, 0.6 mM dithiothreitol, 12% glycerol, 5 μ g of poly(dI-dC), 1 fmol of the probe (about 2 \times 10 4 dpm), and 5 μ g of nuclear extract protein. In the antibody supershift assay, the affinity-purified rabbit polyclonal antibody (1 μ g in 1 μ l) against C/EBP α or C/EBP β purchased from Santa Cruz Biotechnology (Santa Cruz) was added to the binding mixture halfway through the reaction (at 15 min). After incubation, 2.5 μ l of 20% Ficoll was added, and then samples were loaded onto 5% polyacrylamide gels made in a buffer containing 67 mM Tris, 67 mM boric acid, and 2 mM


EDTA. Electrophoresis was performed at 10 V/cm for 2 h at room temperature. The gels were then dried and autoradiographed.

RESULTS


Effects of Dexamethasone and Glucagon on the C/EBP β mRNA Level in Primary-Cultured Hepatocytes—Rat hepatocytes were isolated by collagenase perfusion and cultured on collagen-coated dishes in a medium containing 5% fetal bovine serum. Blot analysis of RNA extracted every 24 h during the culture revealed that the mRNAs for liver-enriched C/EBP family members, C/EBP α and C/EBP β , remained almost unchanged from the start of the culture up to 120 h (data not shown). The following experiments were thus performed between 24 and 72 h of the culture.

To examine the effects of glucocorticoids and/or glucagon on expression of the genes for C/EBP α and C/EBP β , we added these hormones separately or in combination to primary-cultured cells twice, *i.e.* 24 and 6 h prior to harvesting, and then carried out RNA blot analysis (Fig. 1). The level of mRNA for C/EBP α was little changed by a synthetic glucocorticoid, dexamethasone, or glucagon, or their combination. On the other hand, C/EBP β mRNA increased in response to dexamethasone and glucagon, 2.0- and 1.6-fold, respectively. The combination of these hormones led to a 2.9-fold increase, which can be taken as either an additive or synergistic increase, quantitatively.

As a positive control for the effects of the hormones, we also measured the level of mRNA for an ornithine cycle enzyme, arginase, the gene of which is synergistically induced by glucocorticoids and glucagon (or its second messenger analog, dibutyryl cAMP) (10). The arginase mRNA increased in response to these hormones: 6.7-fold with dexamethasone, 4.2-fold with glucagon, and 62-fold with their combination. The extent of this mRNA induction in response to the hormones was comparable to findings previously reported (10) and our observation (Takiguchi,

Fig. 1. Increase in C/EBP β mRNA by dexamethasone and/or glucagon in primary-cultured rat hepatocytes. Dexamethasone (10^{-6} M, Dex) and/or glucagon (3×10^{-8} M, GI) were added or not to the culture medium of primary hepatocytes twice, *i.e.* 24 and 6 h prior to harvesting of the cells, and RNA blot analyses for C/EBP α , C/EBP β , and arginase were carried out. Top, Representative autoradiographs are shown. The positions of 28S and 18S rRNA are indicated. Middle, rRNA staining profiles are shown. Bottom, The radioactivity of the hybridized bands was measured and is shown relative to the level obtained without hormone addition. Bars represent means \pm standard errors.

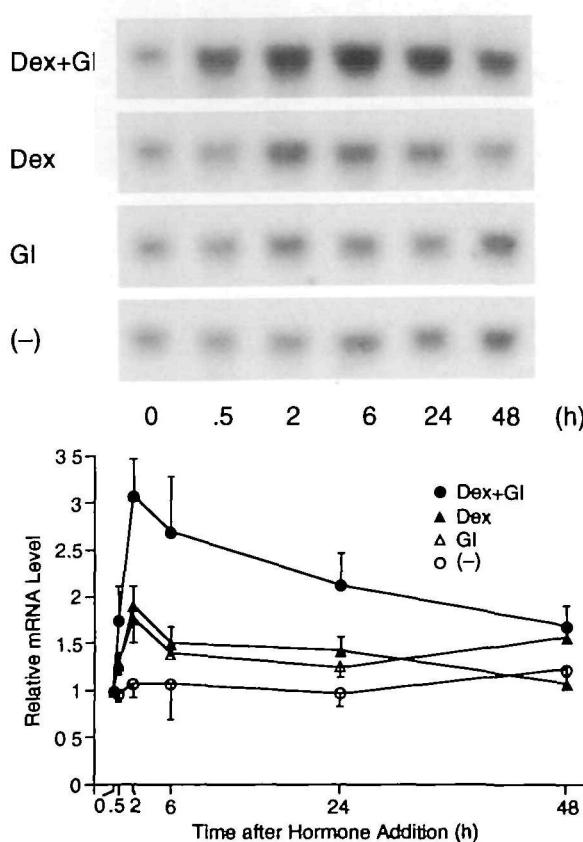


Fig. 2. Dose-dependent increase in C/EBP β mRNA by dexamethasone and glucagon. Various concentrations of dexamethasone (left panel) and glucagon (right panel) were added or not to the culture medium of primary hepatocytes twice, *i.e.* 24 and 6 h prior to harvesting of the cells, and RNA blot analysis for C/EBP β was carried out. In the left panel, GI (+) and GI (-) denote the addition and omission, respectively, of 3×10^{-8} M glucagon simultaneously with dexamethasone. The radioactivity of the hybridized bands is shown relative to the level obtained without hormone addition. Individual values are means \pm standard errors. At the top, representative autoradiographs are shown.

M., unpublished results), where hepatocytes were cultured in a serum-free medium. Therefore, the effects of the hormones derived from serum were almost negligible under the present experimental conditions.

Characterization of Hormonal Induction of *C/EBP β* mRNA—The dependence of *C/EBP β* mRNA induction on the concentrations of dexamethasone and glucagon was then examined (Fig. 2). The mRNA level increased in response to dexamethasone in a dose-dependent manner (left panel). The half-maximal response was obtained at a concentration around 10^{-8} M, this being in agreement with values reported for other responses mediated by the dexamethasone-glucocorticoid receptor (GR) complex (34–36). In the presence of 3×10^{-8} M glucagon, the response curve against the concentration of dexamethasone shifted upward about 1.5-fold. Glucagon also raised the level of *C/EBP β* mRNA in a dose-dependent manner (right panel), the half-maximal response being observed at a concentration around 3×10^{-10} M, which is within the physiological glucagon concentration range in the rat portal vein (37).

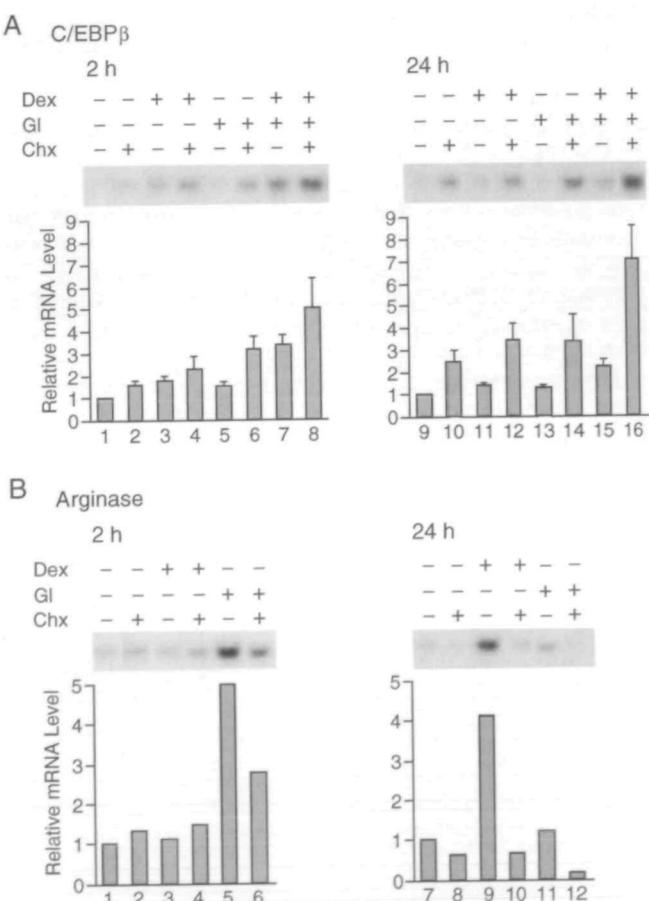
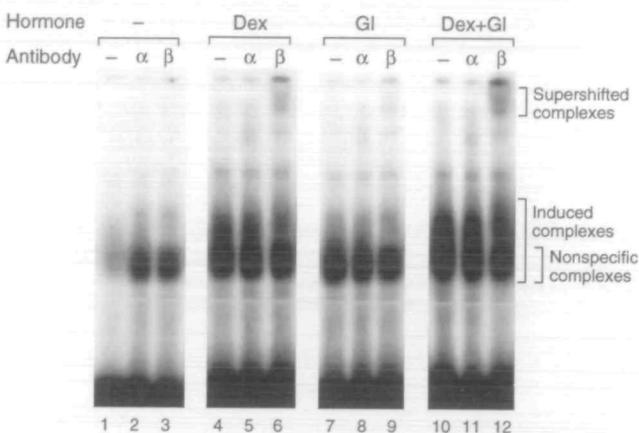

The time course of changes in the *C/EBP β* mRNA level by dexamethasone and/or glucagon was also monitored (Fig. 3). In response to dexamethasone, *C/EBP β* mRNA increased slightly as early as by 30 min, reached a maxi-

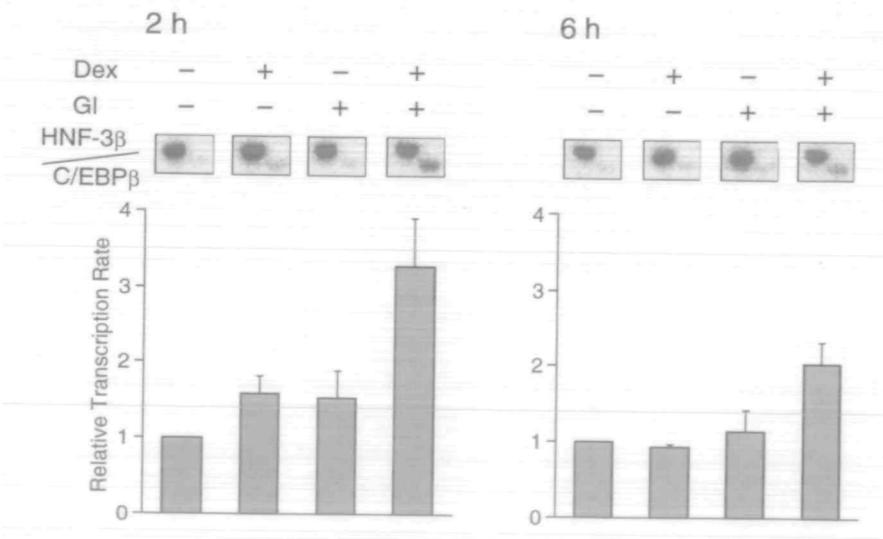
Fig. 3. Time course of increase in *C/EBP β* mRNA by dexamethasone and/or glucagon. Dexamethasone (10^{-8} M, Dex) and/or glucagon (3×10^{-8} M, Gl) were added or not added to the culture medium of primary hepatocytes, and RNA blot analysis for *C/EBP β* was carried out after indicated times. The radioactivity of the hybridized bands is shown relative to the level obtained at the start point. Individual values are means \pm or \pm standard errors. At the top, representative autoradiographs are shown.

mum by 2 h, and then gradually decreased to a control level by 48 h. With glucagon, a similar time course pattern was observed, except that the effect continued for up to 48 h. With the combination of dexamethasone and glucagon, the rapid increase at 30 min was more prominent than that seen with each hormone alone, followed by a likewise magnified maximum at 2 h and a succeeding gradual decrease. The rapid increases in *C/EBP β* mRNA in response to dexamethasone and/or glucagon suggest that these agents directly elevate the level of *C/EBP β* mRNA independent of ongoing protein synthesis.

Effect of a Protein Synthesis Inhibitor on the Increase in *C/EBP β* mRNA—To confirm that the hormonal responses of the *C/EBP β* mRNA level are primary, i.e. they require no prior protein synthesis, we examined the effect of a protein synthesis inhibitor, cycloheximide (Fig. 4). As a positive control, we measured the changes in the level of arginase mRNA (Fig. 4B), the induction of which by dexamethasone was shown to be secondary, i.e. being mediated by a newly synthesized protein factor(s) (10). An


Fig. 4. Effects of cycloheximide on dexamethasone- and/or glucagon-induced *C/EBP β* mRNA. RNA blot analyses for *C/EBP β* (A) and arginase (B) were carried out, after primary hepatocytes had been treated or not treated for 2 or 24 h with 10^{-8} M dexamethasone (Dex) and/or 3×10^{-8} M glucagon (Gl), and simultaneously with 2 μ g/ml of cycloheximide (Chx) where indicated. The radioactivity of the hybridized bands is shown relative to the level obtained without addition of the agents. Above the histograms, representative autoradiographs are shown. In (A), bars represent means \pm standard errors. In (B), the results of one representative experiment are shown.

increase in arginase mRNA was not evident at 2 h after the addition of dexamethasone but was prominent at 24 h. This delayed accumulation of arginase mRNA was completely repressed by cycloheximide. On the other hand, glucagon increased arginase mRNA within 2 h. This rapid increase was only partially repressed by cycloheximide. Apparently, *de novo* protein synthesis is not essential for glucagon to trigger the arginase mRNA induction, although a labile preexisting protein(s) or a newly synthesized protein(s) may possibly further augment the induction. Thus, cycloheximide treatment under the present conditions successfully distinguished the primary response to glucagon and the secondary response to dexamethasone for the induction of arginase mRNA.


C/EBP β mRNA was increased 1.6-fold by treatment with cycloheximide alone for 2 h (Fig. 4A). A phenomenon of this type is known as superinduction and suggests that a labile negative protein factor(s) is involved in regulation of the C/EBP β mRNA level. The increase in C/EBP β mRNA by dexamethasone was further augmented by cycloheximide. Therefore, C/EBP β mRNA accumulation in response to dexamethasone does not appear to require ongoing protein synthesis. The increase in C/EBP β mRNA by glucagon was also augmented by cycloheximide. In accordance with these results, C/EBP β mRNA accumulation in response to dexamethasone plus glucagon was further increased by cycloheximide. Within 24 h, the effect of cycloheximide was augmented, there being an about 2.5-fold increase in C/EBP β mRNA. C/EBP β mRNA accumulation in response to dexamethasone, glucagon and both was further increased by cycloheximide. In conclusion, the increase in C/EBP β mRNA by dexamethasone, as well as by glucagon, is apparently independent of ongoing protein synthesis.

Effects of Dexamethasone and Glucagon on Transcription of the C/EBP β Gene—To determine whether the increases in C/EBP β mRNA by the hormones are caused transcriptionally or post-transcriptionally, the rate of transcription was measured by means of a run-on assay, using nuclei isolated at 2 and 6 h after stimulation with dexamethasone and/or glucagon (Fig. 5). To increase the specificity and sensitivity for the detection of transcripts, antisense RNAs synthesized from cloned genes were

blotted onto membranes and used as probes. As a standard, the rate of transcription of the gene for HNF-3 β , the mRNA level of which was little changed by either hormone (data not shown), was measured, and used to normalize the hybridization efficiency. Within 2 h of stimulation, dexamethasone caused a 1.6-fold increase in the rate of transcription of the C/EBP β gene, and glucagon caused a 1.5-fold increase, and their combination resulted in a 3.3-fold increase. At 6 h, with dexamethasone or glucagon alone the transcription was almost at the control level, while a 2.0-fold increase was still observed with their combination. It is obvious that dexamethasone and/or glucagon augment transcription of the C/EBP β gene to an extent comparable to that of elevation of the mRNA level. Therefore, transcriptional induction can account for the increases in C/EBP β mRNA in response to these hormones.

Fig. 6. Gel shift analysis of changes in DNA-binding activity of C/EBP β by dexamethasone and/or glucagon. Nuclear extracts were prepared from primary hepatocytes that had been not treated or treated with 10^{-8} M dexamethasone (Dex) and/or 3×10^{-8} M glucagon (GI) for 10 h, and subjected to gel shift analysis using the C/EBP site of the Rous sarcoma virus promoter as probe (38). The affinity-purified rabbit polyclonal antibody against C/EBP α (α) or C/EBP β (β) was added to the binding mixture halfway through the reaction. The positions of complexes induced by hormone treatment, supershifted on antibody addition, and nonspecifically augmented on antibody addition are indicated by brackets.

Fig. 5. Nuclear run-on analysis for changes in the rate of transcription of the C/EBP β gene by dexamethasone and/or glucagon. Nuclei were isolated from primary hepatocytes that had been not treated or treated with 10^{-8} M dexamethasone (Dex) and/or 3×10^{-8} M glucagon (GI) for 2 or 6 h, and subjected to run-on assays to determine the rates of transcription of the HNF-3 β and C/EBP β genes simultaneously. The radioactivity of the transcripts hybridized to the C/EBP β probe was normalized as to the HNF-3 β signal, and is shown relative to the level obtained without hormone addition. Bars are means \pm standard errors. Above the histograms, representative autoradiographs are shown.

Effects of Dexamethasone and Glucagon on DNA-Binding Activity of C/EBP β —To verify that elevation of the C/EBP β mRNA level leads to an increase in the DNA-binding activity of the protein, gel shift analysis was performed (Fig. 6). Nuclear extracts were prepared from cells treated with dexamethasone and/or glucagon for 10 h, and then subjected to analysis of binding with the C/EBP site of the Rous sarcoma virus promoter (38). In response to dexamethasone or glucagon, the intensities of bands corresponding to DNA-protein complexes increased (lanes 4 and 7 compared to lane 1). The combination of both hormones resulted in further augmentation of the complexes (lane 10). This complex formation was competed for by an excess amount of the homologous oligonucleotide (data not shown). To determine if C/EBP β was included in the hormone-induced complexes, antibody supershift analysis was performed. When added to mixtures containing extracts derived from hormone-untreated cells, antibodies each specific to C/EBP α and C/EBP β augmented, for an unknown reason, part of the complexes (nonspecific complexes in lanes 2 and 3), which was also augmented by a control antibody (data not shown). The nature of this augmentation was not further investigated here. The C/EBP β -specific antibody caused supershift of the hormone-induced complexes (lanes 6, 9, and 12) more prominently than was seen with the C/EBP α -specific antibody (lanes 5, 8, and 11). The supershifted bands obtained with the C/EBP β antibody were more intense in the case of the extracts derived from cells treated with both dexamethasone and glucagon than with either hormone alone. In summary, the DNA-binding activity of C/EBP β was induced by these hormones, apparently reflecting the changes in the mRNA level.

DISCUSSION

Induction of the C/EBP β Gene in Response to Dexamethasone and Glucagon—We found that the C/EBP β gene is induced by dexamethasone and/or glucagon in primary-cultured rat hepatocytes. Previous reports noted that C/EBP β mRNA is increased by dexamethasone in a hepatoma cell line (23, 24), and by a cAMP analog in rat liver (25). It was also briefly reported that the administration of both dexamethasone and a cAMP analog causes a slight increase in C/EBP β mRNA in neonatal mouse liver (39). The results of the present study indicate that the effects of dexamethasone and/or glucagon on the induction of C/EBP β mRNA in hepatocytes are primary: the mRNA accumulation was rapidly induced independent of ongoing protein synthesis through transcriptional activation. The effects of these hormones were cooperative; *i.e.* their combination resulted in a more potent effects, than with each alone, on the transcription rate, mRNA level, and binding activity of C/EBP β .

Activation of the C/EBP β gene by dexamethasone appears to be mediated by GR, because of the rapid kinetics of the mRNA induction, similarity in dose dependency to other GR-mediated responses (34–36), and insensitivity to cycloheximide.

As for the signal transduction pathway of glucagon, binding of this hormone with its receptor on the cell surface results in increases in the intracellular concentrations of not only cAMP but also 1,2-diacylglycerol and inositol 1,4,

5-trisphosphate, and then augments Ca^{2+} mobilization (reviewed in Ref. 40). Therefore, a number of transcription factors that are targets of these signal transduction pathways are potential candidates for the factor that mediates the effect of glucagon to the C/EBP β gene. Among them, cAMP-responsive element-binding protein (CREB) (41, 42) is one of the best-characterized transcription factors, whose involvement in the cAMP pathway in the liver was reported (25, 43–45). Another notable possibility is auto-stimulation of the C/EBP β gene by C/EBP β itself. In rat pheochromocytoma PC12 cells, treatment with forskolin, an inducer of cAMP, causes phosphorylation of C/EBP β , and stimulates translocation of the protein from the cytosol to the nucleus (46). C/EBP β is also activated by Ca^{2+} /calmodulin-dependent protein kinase II (47) and mitogen-activated protein kinases (48) through direct phosphorylation. In addition, an unknown protein kinase(s) activated through the protein kinase C pathway causes phosphorylation of C/EBP β (49, 50), which results in enhancement of the transcriptional efficacy without alteration of the affinity of DNA-binding (49).

Candidates for Target Genes of Induced C/EBP β —Induced C/EBP β may in turn affect the transcription of its target genes, as an activator or a repressor (LIP form in Ref. 51). Genes affected by glucocorticoids or glucagon in a secondary manner are candidates for targets of induced C/EBP β . A typical secondary glucocorticoid response follows a delayed time course and is sensitive to protein synthesis inhibitors, as exemplified by α_{2u} -globulin genes (7–9), and those of ornithine cycle enzymes such as carbamylphosphate synthetase, argininosuccinate lyase, and arginase (10). The glucocorticoid induction of the genes for α_1 -acid glycoprotein (35), albumin (52), and tryptophan oxygenase (53) is relatively rapid but remains sensitive to protein synthesis inhibitors. While this type of rapid induction appears to be triggered by the glucocorticoid-GR complex interacting with regulatory regions of the genes, as was demonstrated for the tryptophan oxygenase gene (54), the induction may require an additional newly synthesized factor(s) for its further augmentation.

Interestingly, binding of C/EBP family members has been detected in the regulatory regions of some of the above-mentioned genes: the carbamylphosphate synthetase promoter (55); the arginase promoter (56) and enhancer (57); the albumin promoter (15, 58) and enhancer (59); and the α_1 -acid glycoprotein promoter (16, 60, 61). Apparently, the presence of the C/EBP-binding site by itself is not sufficient to mediate the secondary glucocorticoid response, as exemplified by the arginase promoter (57). On the other hand, C/EBP family members seem to be involved in maximal activation of the α_1 -acid glycoprotein promoter by glucocorticoids (60–62). The C/EBP site in the arginase enhancer (57) was recently shown to be capable of mediating a glucocorticoid response (Gotoh, T., unpublished results). Thus, the arginase gene is a good candidate for the target of C/EBP β induced by glucocorticoids.

As for the glucagon pathway, while ornithine cycle enzyme genes are rapidly induced by a cAMP analog, the induction is partly sensitive to cycloheximide (10), thereby suggesting that both primary and secondary elements are involved in this induction. As mentioned above, the regulatory regions of genes for ornithine cycle enzymes such as

carbamylphosphate synthetase (55) and arginase (56, 57) are bound by C/EBP family members, but the involvement of these binding sites in the glucagon response was not demonstrated. The cAMP-responsive element in the phosphoenolpyruvate carboxykinase promoter binds with C/EBP family members as well as CREB (25, 45, 63). C/EBP β was suggested to be involved (25) in the long-term sustained stimulation of the carboxykinase gene in response to cAMP after the initial strong stimulation (64). This view is supported by our present finding that glucagon acts directly on hepatocytes and rapidly increases C/EBP β mRNA.

C/EBP β Induction and Other Aspects of the C/EBP β -Mediated Regulation in Response to Glucocorticoids and Glucagon—In addition to the regulation through transcriptional induction of the gene for C/EBP β , this factor seems to be involved in several other aspects of transcriptional regulation by glucocorticoids and glucagon. In the promoter region of the α_1 -acid glycoprotein gene, there are at least one GR-binding site (65, 66) and two C/EBP β -binding sites (16, 60, 61). The GR site and one of the two C/EBP β sites function cooperatively in the glucocorticoid response (60, 61), possibly through the protein-protein interaction between C/EBP β and GR (61).

Another C/EBP family member, C/EBP δ , was shown to be induced by dexamethasone in 3T3-L1 preadipocytes (12) and adipocytes (67). In our preliminary experiments, dexamethasone also caused C/EBP δ mRNA induction in primary hepatocytes (Matsuno, F. and Iwase, K., unpublished results). Since a heterodimer can be formed between C/EBP β and C/EBP δ (12, 17, 68), this heterodimer species may accumulate along with each homodimer in response to glucocorticoids, and may participate in the secondary response. Recently, another transcription factor named peroxisome proliferator-activated receptor α (PPAR α), a member of the nuclear receptor superfamily, was shown to be induced by glucocorticoids in primary-cultured rat hepatocytes (36). The possible cooperation or differential roles of C/EBPs and this factor in the secondary glucocorticoid response in the liver deserve further attention.

As mentioned above, C/EBP β is likely to be regulated through phosphorylation in response to glucagon. Since the cAMP pathway is widely accepted as the major signaling pathway of glucagon, previous reports on activation of C/EBP β by the cAMP pathway in PC12 cells (46) and phosphorylation of C/EBP β by protein kinase A *in vitro* (50) are noteworthy. In addition, C/EBP family members and CREB/ATF family members seem to modulate each other's functions by forming a heterodimer (69–71), by sharing the target DNA sequence (25, 45, 63, 72–74), and by cooperating with each other by binding to different sites (45, 75).

Alongside these C/EBP β -mediated pathways, potentially a number of other pathways, some of which were described above, seem to participate in transcriptional regulation in response to glucocorticoids and glucagon, altogether determining the final transcriptional levels of target genes.

In general, liver-specific traits such as gluconeogenesis (1, 3) and urea biosynthesis (2, 4) are stimulated cooperatively by glucocorticoids and glucagon. As described above, C/EBP family members interact with the regula-

tory regions of the genes for phosphoenolpyruvate carboxykinase (25, 45, 63), carbamylphosphate synthetase (55), and arginase (56, 57). The cooperative induction of these genes by glucocorticoids and glucagon might be accounted for, at least in part, by convergence of the effects of these hormones on activation of the C/EBP β gene. It is tempting to speculate that C/EBP β is generally involved in the regulation of gluconeogenesis and urea biosynthesis.

We thank D. Muller for the facilitation in preparing the manuscript, M. Ohara for the helpful comments, and our colleagues for the suggestions and discussions.

REFERENCES

1. Granner, D. and Pilks, S. (1990) The genes of hepatic glucose metabolism. *J. Biol. Chem.* **265**, 10173–10176
2. Morris, S.M., Jr. (1992) Regulation of enzymes of urea and arginine synthesis. *Annu. Rev. Nutr.* **12**, 81–101
3. Lemaigre, F.P. and Rousseau, G.G. (1994) Transcriptional control of genes that regulate glycolysis and gluconeogenesis in adult liver. *Biochem. J.* **303**, 1–14
4. Takiguchi, M. and Mori, M. (1995) Transcriptional regulation of genes for ornithine cycle enzymes. *Biochem. J.* **312**, 649–659
5. Ashburner, M. (1990) Puffs, genes, and hormones revisited. *Cell* **61**, 1–3
6. Andres, A.J. and Thummel, C.S. (1992) Hormones, puffs and flies: The molecular control of metamorphosis by ecdysone. *Trends Genet.* **8**, 132–138
7. Chen, C.-L.C. and Feigelson, P. (1980) Hormonal control of α_{2u} globulin synthesis and its mRNA in isolated hepatocytes. *Ann. N. Y. Acad. Sci.* **349**, 28–45
8. Addison, W.R. and Kurtz, D.T. (1986) Nucleotide sequences required for the regulation of a rat α_{2u} -globulin gene by glucocorticoids. *Mol. Cell. Biol.* **6**, 2334–2346
9. Hess, P. and Payvar, F. (1992) Hormone withdrawal triggers a premature and sustained gene activation from delayed secondary glucocorticoid response elements. *J. Biol. Chem.* **267**, 3490–3497
10. Nebes, V.L. and Morris, S.M., Jr. (1988) Regulation of messenger ribonucleic acid levels for five urea cycle enzymes in cultured rat hepatocytes: Requirements for cyclic adenosine monophosphate, glucocorticoids, and ongoing protein synthesis. *Mol. Endocrinol.* **2**, 444–451
11. Uchida, C., Funai, T., Oda, T., Ohbayashi, K., and Ichiyama, A. (1994) Regulation by glucagon of serine:pyruvate/alanine:glyoxylate aminotransferase gene expression in cultured rat hepatocytes. *J. Biol. Chem.* **269**, 8849–8856
12. Cao, Z., Umek, R.M., and McKnight, S.L. (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. *Genes Dev.* **5**, 1538–1552
13. Akira, S., Isshiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., Nakajima, T., Hirano, T., and Kishimoto, T. (1990) A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. *EMBO J.* **9**, 1897–1906
14. Poli, V., Mancini, F.P., and Cortese, R. (1990) IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. *Cell* **63**, 643–653
15. Descombes, P., Chojkier, M., Lichtsteiner, S., Falvey, E., and Schibler, U. (1990) LAP, a novel member of the C/EBP gene family, encodes a liver-enriched transcriptional activator protein. *Genes Dev.* **4**, 1541–1551
16. Chang, C.-J., Chen, T.-T., Lei, H.-Y., Chen, D.-S., and Lee, S.-C. (1990) Molecular cloning of a transcription factor, AGP/EBP, that belongs to members of the C/EBP family. *Mol. Cell. Biol.* **10**, 6642–6653
17. Williams, S.C., Cantwell, C.A., and Johnson, P.F. (1991) A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers *in vitro*. *Genes Dev.* **5**, 1553–1567
18. Landschulz, W.H., Johnson, P.F., Adashi, E.Y., Graves, B.J., and McKnight, S.L. (1988) Isolation of a recombinant copy of the

gene encoding C/EBP. *Genes Dev.* **2**, 786-800

19. van Ooij, C., Snyder, R.C., Paeper, B.W., and Duester, G. (1992) Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein α , liver activator protein, and D-element-binding protein. *Mol. Cell. Biol.* **12**, 3023-3031

20. Nishiyori, A., Tashiro, H., Kimura, A., Akagi, K., Yamamura, K., Mori, M., and Takiguchi, M. (1994) Determination of tissue specificity of the enhancer by combinatorial operation of tissue-enriched transcription factors: Both HNF-4 and C/EBP β are required for liver-specific activity of the ornithine transcarbamylase enhancer. *J. Biol. Chem.* **269**, 1323-1331

21. Tanaka, T., Akira, S., Yoshida, K., Umemoto, M., Yoneda, Y., Shirafuji, N., Fujiwara, H., Suematsu, S., Yoshida, N., and Kishimoto, T. (1995) Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. *Cell* **80**, 353-361

22. Yeh, W.-C., Cao, Z., Classon, M., and McKnight, S.L. (1995) Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. *Genes Dev.* **9**, 168-181

23. Baumann, H., Morella, K.K., Campos, S.P., Cao, Z., and Jahreis, G.P. (1992) Role of CAAT-enhancer binding protein isoforms in the cytokine regulation of acute-phase plasma protein genes. *J. Biol. Chem.* **267**, 19744-19751

24. Campos, S.P. and Baumann, H. (1992) Insulin is a prominent modulator of the cytokine-stimulated expression of acute-phase plasma protein genes. *Mol. Cell. Biol.* **12**, 1789-1797

25. Park, E.A., Gurney, A.L., Nizinski, S.E., Hakimi, P., Cao, Z., Moorman, A., and Hanson, R.W. (1993) Relative roles of CCAAT/enhancer-binding protein β and cAMP regulatory element-binding protein in controlling transcription of the gene for phosphoenolpyruvate carboxykinase (GTP). *J. Biol. Chem.* **268**, 613-619

26. Berry, M.N. and Friend, D.S. (1969) High-yield preparation of isolated rat liver parenchymal cells: A biochemical and fine structural study. *J. Cell Biol.* **43**, 506-520

27. Tanaka, K., Sato, M., Tomita, Y., and Ichihara, A. (1978) Biochemical studies on liver functions in primary cultured hepatocytes of adult rats: I. Hormonal effects on cell viability and protein synthesis. *J. Biochem.* **84**, 937-946

28. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal. Biochem.* **162**, 156-159

29. Christy, R.J., Kaestner, K.H., Geiman, D.E., and Lane, M.D. (1991) CCAAT/enhancer binding protein gene promoter: Binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. *Proc. Natl. Acad. Sci. USA* **88**, 2593-2597

30. Kawamoto, S., Amaya, Y., Murakami, K., Tokunaga, F., Iwanaga, S., Kobayashi, K., Saheki, T., Kimura, S., and Mori, M. (1987) Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver arginase. *J. Biol. Chem.* **262**, 6280-6283

31. Groudine, M., Peretz, M., and Weintraub, H. (1981) Transcriptional regulation of hemoglobin switching in chicken embryos. *Mol. Cell. Biol.* **1**, 281-288

32. Lai, E., Prezioso, V.R., Tao, W.F., Chen, W.S., and Darnell, J.E., Jr. (1991) Hepatocyte nuclear factor 3 α belongs to a gene family in mammals that is homologous to the *Drosophila* homeotic gene fork head. *Genes Dev.* **5**, 416-427

33. Schreiber, E., Matthias, P., Müller, M.M., and Schaffner, W. (1989) Rapid detection of octamer binding proteins with 'mini-extracts,' prepared from a small number of cells. *Nucleic Acids Res.* **17**, 6419

34. Ringold, G.M., Yamamoto, K.R., Tomkins, G.M., Bishop, J.M., and Varmus, H.E. (1975) Dexamethasone-mediated induction of mouse mammary tumor virus RNA: A system for studying glucocorticoid action. *Cell* **6**, 299-305

35. Baumann, H., Firestone, G.L., Burgess, T.L., Gross, K.W., Yamamoto, K.R., and Held, W.A. (1983) Dexamethasone regulation of α_1 -acid glycoprotein and other acute phase reactants in rat liver and hepatoma cells. *J. Biol. Chem.* **258**, 563-570

36. Lemberger, T., Staels, B., Saladin, R., Desvergne, B., Auwerx, J., and Wahli, W. (1994) Regulation of the peroxisome proliferator-activated receptor α gene by glucocorticoids. *J. Biol. Chem.* **269**, 24527-24530

37. Lin, R.C., Snodgrass, P.J., and Rabier, D. (1982) Induction of urea cycle enzymes by glucagon and dexamethasone in monolayer cultures of adult rat hepatocytes. *J. Biol. Chem.* **257**, 5061-5067

38. Kapiloff, M.S., Mathis, J.M., Nelson, C.A., Lin, C.R., and Rosenfeld, M.G. (1991) Calcium/calmodulin-dependent protein kinase mediates a pathway for transcriptional regulation. *Proc. Natl. Acad. Sci. USA* **88**, 3710-3714

39. Tönjes, R.R., Xanthopoulos, K.G., Darnell, J.E., Jr., and Paul, D. (1992) Transcriptional control in hepatocytes of normal and c¹⁴cos albino deletion mice. *EMBO J.* **11**, 127-133

40. Bygrave, F.L. and Benedetti, A. (1993) Calcium: Its modulation in liver by cross-talk between the actions of glucagon and calcium-mobilizing agonists. *Biochem. J.* **296**, 1-14

41. Gonzalez, G.A., Yamamoto, K.K., Fischer, W.H., Karr, D., Menzel, P., Biggs, W.I., Vale, W.W., and Montminy, M.R. (1989) A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. *Nature* **337**, 749-752

42. Hoeffler, J.P., Meyer, T.E., Yun, Y., Jameson, J.L., and Habener, J.F. (1988) Cyclic AMP-responsive DNA-binding protein: Structure based on a cloned placental cDNA. *Science* **242**, 1430-1433

43. Boshart, M., Weih, F., Nichols, M., and Schütz, G. (1991) The tissue-specific extinguisher locus TSE1 encodes a regulatory subunit of cAMP-dependent protein kinase. *Cell* **66**, 849-859

44. Nichols, M., Weih, F., Schmid, W., DeVack, C., Kowenz-Leutz, E., Luckow, B., Boshart, M., and Schütz, G. (1992) Phosphorylation of CREB affects its binding to high and low affinity sites: Implications for cAMP induced gene transcription. *EMBO J.* **11**, 3337-3346

45. Roesler, W.J., McFie, P.J., and Puttick, D.M. (1993) Evidence for the involvement of at least two distinct transcription factors, one of which is liver-enriched, for the activation of the phosphoenolpyruvate carboxykinase gene promoter by cAMP. *J. Biol. Chem.* **268**, 3791-3796

46. Metz, R. and Ziff, E. (1991) cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to translocate to the nucleus and induce c-fos transcription. *Genes Dev.* **5**, 1754-1766

47. Wegner, M., Cao, Z., and Rosenfeld, M.G. (1992) Calcium-regulated phosphorylation within the leucine zipper of C/EBP β . *Science* **256**, 370-373

48. Nakajima, T., Kinoshita, S., Sasagawa, T., Sasaki, K., Naruto, M., Kishimoto, T., and Akira, S. (1993) Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. *Proc. Natl. Acad. Sci. USA* **90**, 2207-2211

49. Trautwein, C., Caelles, C., van der Geer, P., Hunter, T., Karin, M., and Chojkier, M. (1993) Transactivation by NF-IL6/LAP is enhanced by phosphorylation of its activation domain. *Nature* **364**, 544-547

50. Trautwein, C., van der Geer, P., Karin, M., Hunter, T., and Chojkier, M. (1994) Protein kinase A and C site-specific phosphorylations of LAP (NF-IL6) modulate its binding affinity to DNA recognition elements. *J. Clin. Invest.* **93**, 2554-2561

51. Descombes, P. and Schibler, U. (1991) A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. *Cell* **67**, 569-579

52. Nawa, K., Nakamura, T., Kumatori, A., Noda, C., and Ichihara, A. (1986) Glucocorticoid-dependent expression of the albumin gene in adult rat hepatocytes. *J. Biol. Chem.* **261**, 16883-16888

53. Nakamura, T., Niimi, S., Nawa, K., Noda, C., Ichihara, A., Takagi, Y., Anai, M., and Sakaki, Y. (1987) Multihormonal regulation of transcription of the tryptophan 2,3-dioxygenase gene in primary cultures of adult rat hepatocytes with special reference to the presence of a transcriptional protein mediating the action of glucocorticoids. *J. Biol. Chem.* **262**, 727-733

54. Danesch, U., Gloss, B., Schmid, W., Schütz, G., Schüle, R., and Renkawitz, R. (1987) Glucocorticoid induction of the rat tryptophan oxygenase gene is mediated by two widely separated glucocorticoid-responsive elements. *EMBO J.* **6**, 625-630

55. Howell, B.W., Lagacé, M., and Shore, G.C. (1989) Activity of the carbamyl phosphate synthetase I promoter in liver nuclear extracts is dependent on a *cis*-acting C/EBP recognition element. *Mol. Cell. Biol.* **9**, 2928-2933

56. Takiguchi, M. and Mori, M. (1991) In vitro analysis of the rat liver-type arginase promoter. *J. Biol. Chem.* **266**, 9186-9193

57. Gotoh, T., Haraguchi, Y., Takiguchi, M., and Mori, M. (1994) The delayed glucocorticoid-responsive and hepatoma cell-selective enhancer of the rat arginase gene is located around intron 7. *J. Biochem.* **115**, 778-788

58. Friedman, A.D., Landschulz, W.H., and McKnight, S.L. (1989) CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells. *Genes Dev.* **3**, 1314-1322

59. Herbst, R.S., Friedman, N., Darnell, J.E., Jr., and Babiss, L.E. (1989) Positive and negative regulatory elements in the mouse albumin enhancer. *Proc. Natl. Acad. Sci. USA* **86**, 1553-1557

60. Williams, P., Ratajczak, T., Lee, S.C., and Ringold, G.M. (1991) AGP/EBP(LAP) expressed in rat hepatoma cells interacts with multiple promoter sites and is necessary for maximal glucocorticoid induction of the rat alpha-1 acid glycoprotein gene. *Mol. Cell. Biol.* **11**, 4959-4965

61. Nishio, Y., Isshiki, H., Kishimoto, T., and Akira, S. (1993) A nuclear factor for interleukin-6 expression (NF-IL6) and the glucocorticoid receptor synergistically activate transcription of the rat α_1 -acid glycoprotein gene via direct protein-protein interaction. *Mol. Cell. Biol.* **13**, 1854-1862

62. Baumann, H., Jahreis, G.P., Morella, K.K., Won, K.-A., Pruitt, S.C., Jones, V.E., and Prowse, K.R. (1991) Transcriptional regulation through cytokine and glucocorticoid response elements of rat acute phase plasma protein genes by C/EBP and JunB. *J. Biol. Chem.* **266**, 20390-20399

63. O'Brien, R.M., Lucas, P.C., Yamasaki, T., Noisin, E.L., and Granner, D.K. (1994) Potential convergence of insulin and cAMP signal transduction systems at the phosphoenolpyruvate carboxy-kinase (PEPCK) gene promoter through CCAAT/enhancer binding protein (C/EBP). *J. Biol. Chem.* **269**, 30419-30428

64. Sasaki, K., Cripe, T.P., Koch, S.R., Andreone, T.L., Petersen, D.D., Beale, E.G., and Granner, D.K. (1984) Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription: The dominant role of insulin. *J. Biol. Chem.* **259**, 15242-15251

65. Klein, E.S., DiLorenzo, D., Posseckert, G., Beato, M., and Ringold, G.M. (1988) Sequences downstream of the glucocorticoid regulatory element mediate cycloheximide inhibition of steroid induced expression from the rat α_1 -acid glycoprotein promoter: Evidence for a labile transcription factor. *Mol. Endocrinol.* **2**, 1343-1351

66. Alam, T., An, M.R., Mifflin, R.C., Hsieh, C.-C., Ge, X., and Papaconstantinou, J. (1993) trans-Activation of the α_1 -acid glycoprotein gene acute phase responsive element by multiple isoforms of C/EBP and glucocorticoid receptor. *J. Biol. Chem.* **268**, 15681-15688

67. MacDougald, O.A., Cornelius, P., Lin, F.T., Chen, S.S., and Lane, M.D. (1994) Glucocorticoids reciprocally regulate expression of the CCAAT/enhancer-binding protein α and δ genes in 3T3-L1 adipocytes and white adipose tissue. *J. Biol. Chem.* **269**, 19041-19047

68. Kinoshita, S., Akira, S., and Kishimoto, T. (1992) A member of the C/EBP family, NF-IL6 β , forms a heterodimer and transcriptionally synergizes with NF-IL6. *Proc. Natl. Acad. Sci. USA* **89**, 1473-1476

69. Vinson, C.R., Hai, T., and Boyd, S.M. (1993) Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. *Genes Dev.* **7**, 1047-1058

70. Vallejo, M., Ron, D., Miller, C.P., and Habener, J.F. (1993) C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. *Proc. Natl. Acad. Sci. USA* **90**, 4679-4683

71. Tsukada, J., Saito, K., Waterman, W.R., Webb, A.C., and Auron, P.E. (1994) Transcription factors NF-IL6 and CREB recognize a common essential site in the human prointerleukin 1 β gene. *Mol. Cell. Biol.* **14**, 7285-7297

72. Bakker, O. and Parker, M.G. (1991) CAAT/enhancer binding protein is able to bind to ATF/CRE elements. *Nucleic Acids Res.* **19**, 1213-1217

73. Kageyama, R., Sasai, Y., and Nakanishi, S. (1991) Molecular characterization of transcription factors that bind to the cAMP responsive region of the substance P precursor gene: cDNA cloning of a novel C/EBP-related factor. *J. Biol. Chem.* **266**, 15525-15531

74. Vallejo, M., Gosse, M.E., Beckman, W., and Habener, J.F. (1995) Impaired cyclic AMP-dependent phosphorylation renders CREB a repressor of C/EBP-induced transcription of the somatostatin gene in an insulinoma cell line. *Mol. Cell. Biol.* **15**, 415-424

75. Liu, J., Park, E.A., Gurney, A.L., Roesler, W.J., and Hanson, R.W. (1991) Cyclic AMP induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription is mediated by multiple promoter elements. *J. Biol. Chem.* **266**, 19095-19102